518 research outputs found

    Ab initio many-body calculation of excitons in solid Ne and Ar

    Full text link
    Absorption spectra, exciton energy levels and wave functions for solid Ne and Ar have been calculated from first principles using many-body techniques. Electronic band structures of Ne and Ar were calculated using the GW approximation. Exciton states were calculated by diagonalizing an exciton Hamiltonian derived from the particle-hole Green function, whose equation of motion is the Bethe-Salpeter equation. Singlet and triplet exciton series up to n=5 for Ne and n=3 for Ar were obtained. Binding energies and longitudinal-transverse splittings of n=1 excitons are in excellent agreement with experiment. Plots of correlated electron-hole wave functions show that the electron-hole complex is delocalised over roughly 7 a.u. in solid Ar.Comment: 6 page

    Magnetic Miniband Structure and Quantum Oscillations in Lateral Semiconductor Superlattices

    Full text link
    We present fully quantum-mechanical magnetotransport calculations for short-period lateral superlattices with one-dimensional electrostatic modulation. A non-perturbative treatment of both magnetic field and modulation potential proves to be necessary to reproduce novel quantum oscillations in the magnetoresistance found in recent experiments in the resistance component parallel to the modulation potential. In addition, we predict oscillations of opposite phase in the component perpendicular to the modulation not yet observed experimentally. We show that the new oscillations originate from the magnetic miniband structure in the regime of overlapping minibands.Comment: 6 pages with 4 figure

    Schwangerschaftsdepression und deren Behandlung

    Get PDF
    Zusammenfassung: Etwa 11% aller schwangeren Frauen leiden unter einer behandlungsbedürftigen Depression, welche unbehandelt mit Risiken wie Frühgeburt oder niederem Geburtsgewicht verbunden ist. Da manche Symptome der Depression oft der Schwangerschaft zugeschrieben werden, ist die Diagnose einer Schwangerschaftsdepression nicht immer leicht. Eine weitere Herausforderung ist die Wahl der geeigneten Therapiemaßnahme. Als Behandlungsmöglichkeiten stehen neben Psycho- und Pharmakotherapie auch die Elektrokrampftherapie (EKT) sowie Lichttherapie zur Auswahl. Aktuelle Berichte über Auswirkungen von Antidepressiva auf die Entwicklung des Ungeborenen und postpartale Anpassungsschwierigkeiten führen zu großen Verunsicherungen. Die Entscheidung, welche Therapiemaßnahme ergriffen wird, kann nur mit der werdenden Mutter zusammen getroffen werden; ein sorgfältiges Abwägen der Vor- und Nachteile der Behandlung ist dafür Voraussetzun

    Theoretical study of interacting hole gas in p-doped bulk III-V semiconductors

    Get PDF
    We study the homogeneous interacting hole gas in pp-doped bulk III-V semiconductors. The structure of the valence band is modelled by Luttinger's Hamiltonian in the spherical approximation, giving rise to heavy and light hole dispersion branches, and the Coulomb repulsion is taken into account via a self-consistent Hartree-Fock treatment. As a nontrivial feature of the model, the self-consistent solutions of the Hartree-Fock equations can be found in an almost purely analytical fashion, which is not the case for other types of effective spin-orbit coupling terms. In particular, the Coulomb interaction renormalizes the Fermi wave numbers for heavy and light holes. As a consequence, the ground state energy found in the self-consistent Hartree-Fock approach and the result from lowest-order perturbation theory do not agree. We discuss the consequences of our observations for ferromagnetic semiconductors, and for the possible observation of the spin-Hall effect in bulk pp-doped semiconductors. Finally, we also investigate elementary properties of the dielectric function in such systems.Comment: 9 pages, 5 figures, title slightly changed in the course of editorial process, a few references added, version to appear in Phys. Rev.

    Retrospective analysis of a nonforecasted rain-on-snow flood in the Alps – a matter of model limitations or unpredictable nature?

    Get PDF
    A rain-on-snow flood occurred in the Bernese Alps, Switzerland, on 10 October 2011, and caused significant damage. As the flood peak was unpredicted by the flood forecast system, questions were raised concerning the causes and the predictability of the event. Here, we aimed to reconstruct the anatomy of this rain-on-snow flood in the Lötschen Valley (160 km<sup>2</sup>) by analyzing meteorological data from the synoptic to the local scale and by reproducing the flood peak with the hydrological model WaSiM-ETH (Water Flow and Balance Simulation Model). This in order to gain process understanding and to evaluate the predictability. <br><br> The atmospheric drivers of this rain-on-snow flood were (i) sustained snowfall followed by (ii) the passage of an atmospheric river bringing warm and moist air towards the Alps. As a result, intensive rainfall (average of 100 mm day<sup>-1</sup>) was accompanied by a temperature increase that shifted the 0° line from 1500 to 3200 m a.s.l. (meters above sea level) in 24 h with a maximum increase of 9 K in 9 h. The south-facing slope of the valley received significantly more precipitation than the north-facing slope, leading to flooding only in tributaries along the south-facing slope. We hypothesized that the reason for this very local rainfall distribution was a cavity circulation combined with a seeder-feeder-cloud system enhancing local rainfall and snowmelt along the south-facing slope. <br><br> By applying and considerably recalibrating the standard hydrological model setup, we proved that both latent and sensible heat fluxes were needed to reconstruct the snow cover dynamic, and that locally high-precipitation sums (160 mm in 12 h) were required to produce the estimated flood peak. However, to reproduce the rapid runoff responses during the event, we conceptually represent likely lateral flow dynamics within the snow cover causing the model to react "oversensitively" to meltwater. <br><br> Driving the optimized model with COSMO (Consortium for Small-scale Modeling)-2 forecast data, we still failed to simulate the flood because COSMO-2 forecast data underestimated both the local precipitation peak and the temperature increase. Thus we conclude that this rain-on-snow flood was, in general, predictable, but requires a special hydrological model setup and extensive and locally precise meteorological input data. Although, this data quality may not be achieved with forecast data, an additional model with a specific rain-on-snow configuration can provide useful information when rain-on-snow events are likely to occur

    Ground state energies of quantum dots in high magnetic fields: A new approach

    Full text link
    We present a new method for calculating ground state properties of quantum dots in high magnetic fields. It takes into account the equilibrium positions of electrons in a Wigner cluster to minimize the interaction energy in the high field limit. Assuming perfect spin alignment the many-body trial function is a single Slater determinant of overlapping oscillator functions from the lowest Landau level centered at and near the classical equilibrium positions. We obtain an analytic expression for the ground state energy and present numerical results for up to N=40.Comment: 4 pages, including 2 figures, contribution to the Proceedings of EP2DS-14, submitted to Physica

    Magnetic ground state and spin fluctuations in MnGe chiral magnet as studied by Muon Spin Rotation

    Get PDF
    We have studied by muon spin resonance ({\mu}SR) the helical ground state and fluctuating chiral phase recently observed in the MnGe chiral magnet. At low temperature, the muon polarization shows double period oscillations at short time scales. Their analysis, akin to that recently developed for MnSi [A. Amato et al., Phys. Rev. B 89, 184425 (2014)], provides an estimation of the field distribution induced by the Mn helical order at the muon site. The refined muon position agrees nicely with ab initio calculations. With increasing temperature, an inhomogeneous fluctuating chiral phase sets in, characterized by two well separated frequency ranges which coexist in the sample. Rapid and slow fluctuations, respectively associated with short range and long range ordered helices, coexist in a large temperature range below TN_{N} = 170 K. We discuss the results with respect to MnSi, taking the short helical period, metastable quenched state and peculiar band structure of MnGe into account.Comment: 13 pages, 11 figure

    Commensurability effects in Andreev antidot billiards

    Full text link
    An Andreev billiard was realized in an array of niobium filled antidots in a high-mobility InAs/AlGaSb heterostructure. Below the critical temperature T_C of the Nb dots we observe a strong reduction of the resistance around B=0 and a suppression of the commensurability peaks, which are usually found in antidot lattices. Both effects can be explained in a classical Kubo approach by considering the trajectories of charge carriers in the semiconductor, when Andreev reflection at the semiconductor-superconductor interface is included. For perfect Andreev reflection, we expect a complete suppression of the commensurability features, even though motion at finite B is chaotic.Comment: 4 pages, 4 figure
    corecore